新闻动态

News

当前位置: 新闻动态 > 科研聚焦

  • 2021-05-23
    轻轻地我走了,正如我轻轻地来,我挥一挥衣袖,留下一点电!这不是诗人徐志摩对康桥离别的思念,而是南方科技大学材料科学与工程系副教授刘玮书课题组在柔性薄膜温差发电器件方向取得新进展的生动写照。相关成果以“Leaf‐Inspired Flexible Thermoelectric Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air”为题发表在Wiley旗下期刊 Advanced Science 2021。
  • 2021-04-01
    近期,南方科技大学材料科学与工程系副教授任富增课题组在生物医用骨科植入材料方面取得一系列研究进展,在国际知名期刊连续发表5篇论文。
  • 2021-03-30
    南方科技大学电子与电气工程系副教授刘言军、前沿与交叉科学研究院研究副教授苏峰育和材料科学与工程系教授田颜清课题组合作,在自动调控电致变色智能窗领域取得了研究新进展,相关成果以“Automatic light-adjusting electrochromic device powered by perovskite solar cell”为题在国际著名学术期刊《自然·通讯》(Nature Communications)上发表。
  • 2021-03-25
    材料系郭传飞课题组从折纸中获得灵感,选用形状记忆复合材料(交联聚环辛烯为基体,碳纳米管为填料)设计了高性能、可折叠兼具监测盐堵塞功能的柔性太阳能蒸发系统。该界面蒸发系统具有优异的形状记忆效应,可以折叠至原尺寸的1/9,并在使用时于阳光下按需自展开。此外,该界面蒸发系统通过监测电容信号,实现了实时、原位监测盐结晶和盐堵塞。由于其具有高的太阳能转换效率、良好的便携性和原位监测盐堵塞能力,这种新型的界面蒸发系统在海水淡化领域具有巨大的应用潜力。
  • 2021-02-07
    近日,南方科技大学材料科学与工程系副教授李贵新课题组和以色列特拉维夫大学教授Tal Ellenbogen课题组等在基于几何相位(Pancharatnam-Berry Phase)的非线性超构表面太赫兹辐射源领域取得新进展,相关成果以“Functional THz Emitters based on Pancharatnam-Berry Phase Nonlinear Metasurfaces”为题发表于Nature Communications。
  • 2021-02-04
    近日,南方科技大学材料科学与工程系副教授谷猛课题组联合物理系教授陈朗课题组和加拿大西安大略大学教授孙学良课题组,在碱金属-空气电池微结构动态变化研究领域取得系列进展,相关成果发表在国际著名杂志Angewandte Chemie International Edition、ACS Nano、Energy Storage Materials上。
  • 2021-01-14
    近日,南方科技大学材料科学与工程系(简称“材料系”)副教授谷猛课题组与俄勒冈州立大学学者冯振兴课题组合作在纳米材料领域中取得了新进展,制备出了具有超高活性的Ir-CoOx NSs,相关成果发表在催化专业期刊ACS Catalysis。
  • 2020-11-16
    近期,南方科技大学材料科学与工程系(简称“材料系”)教授郭旭岗课题组在有机和钙钛矿太阳能电池领域取得重要研究进展,先后在材料和化学领域高水平期刊连续发表6篇论文,包括《先进材料》(Advanced Materials) 2篇,《中国科学:化学》(SCIENCE CHINA Chemistry) 1篇,能源和环境科学(Energy & Environmental Science)1篇,《先进功能材料》(Advanced Functional Materials) 1篇,《美国化学会志》(Journal of the American Chemical Society) 1篇。
  • 2020-11-02
    近日,南方科技大学材料科学与工程系(简称“材料系”)副教授田雷蕾课题组在国际知名期刊《先进材料》(Advanced Materials)上报道了一种具有高的NIR-II发光效率且耐肿瘤乏氧的高效光诊疗试剂(COi6-4Cl)。
  • 2020-10-21
    近日,南方科技大学材料科学与工程系副教授郭传飞团队和麻省理工学院的合作团队以“Electrical bioadhesive interface for bioelectronics”为题,在Nature Materials发表论文,首次提出可粘附生物电子器件(Bioadhesive Electronics)的概念,通过引入一层生物粘性电子界面(E-bioadhesive Interface)实现稳定的人机融合(图1)。这种生物粘性电子界面能够快速把电子器件粘附在体内组织或器官表面,实现长期稳定的双向电信号交互。该材料还具有与组织相匹配的高柔顺性和良好的生物相容性。